Roundabout Controls Axon Crossing of the CNS Midline and Defines a Novel Subfamily of Evolutionarily Conserved Guidance Receptors
نویسندگان
چکیده
The robo gene in Drosophila was identified in a large-scale mutant screen for genes that control the decision by axons to cross the CNS midline. In robo mutants, too many axons cross and recross the midline. Here we show that robo encodes an axon guidance receptor that defines a novel subfamily of immunoglobulin superfamily proteins that is highly conserved from fruit flies to mammals. For those axons that never cross the midline, Robo is expressed on their growth cones from the outset; for the majority of axons that do cross the midline, Robo is expressed at high levels on their growth cones only after they cross the midline. Transgenic rescue experiments reveal that Robo can function in a cell-autonomous fashion. Robo appears to function as the gatekeeper controlling midline crossing.
منابع مشابه
The function of leak and kuzbanian during growth cone and cell migration
Axonal growth cones require an evolutionary conserved repulsive guidance system to ensure proper crossing of the CNS midline. In Drosophila, the Slit protein is a repulsive signal secreted by the midline glial cells. It binds to the Roundabout receptors, which are expressed on CNS axons in the longitudinal tracts but not in the commissural tracts. Here we present an analysis of the genes leak a...
متن کاملSlit Binding via the Ig1 Domain Is Essential for Midline Repulsion by Drosophila Robo1 but Dispensable for Receptor Expression, Localization, and Regulation in Vivo
The midline repellant ligand Slit and its Roundabout (Robo) family receptors constitute the major midline repulsive pathway in bilaterians. Slit proteins produced at the midline of the central nervous system (CNS) signal through Robo receptors expressed on axons to prevent them from crossing the midline, and thus regulate connectivity between the two sides of the nervous system. Biochemical str...
متن کاملFurther tales of the midline.
In the vertebrate central nervous system (CNS), specialized glial and neuronal cells positioned at the dorsal and ventral midline act as intermediate targets for commissural axons by secreting a variety of attractants and repellents. Despite the diversity of commissural projections, recent findings suggest that the same basic set of molecules controls midline crossing at all level of the CNS. M...
متن کاملDosage-Sensitive and Complementary Functions of Roundabout and Commissureless Control Axon Crossing of the CNS Midline
commissureless and roundabout lead to complementary mutant phenotypes in which either too few or too many axons cross the midline. The robo;comm double-mutant phenotype is identical to robo alone, suggesting that in the absence of robo, comm is no longer required. Comm is expressed on midline cells; Robo is expressed in a dynamic fashion on growth cones and appears to function as an axon guidan...
متن کاملFunctional Diversity of Robo Receptor Immunoglobulin Domains Promotes Distinct Axon Guidance Decisions
Recognition molecules of the immunoglobulin (Ig) superfamily control axon guidance in the developing nervous system. Ig-like domains are among the most widely represented protein domains in the human genome, and the number of Ig superfamily proteins is strongly correlated with cellular complexity. In Drosophila, three Roundabout (Robo) Ig superfamily receptors respond to their common Slit ligan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 92 شماره
صفحات -
تاریخ انتشار 1998